如何入门学习机器学习及其相关基础?
选择走偏学术的道路,通常相对工程风向对实践会少些,但是一些实践还是会增加你对理论知识的理解认识和记忆。
因此推荐你在学习基础理论知识的同时,上手一个多几个框架,TensorFlow, Caffe,paddle-paddle, automl, theano等根据自己的喜好选择一个,然后根据你学习的理论,尝试将一个个问题动手编程解决。ML 对算法要求还是挺高的,虽然不会推导算法,也可以使用框架解决问题,因为框架都帮你解决了,但是深入学习还是需要的,因此数学理论知识也是离不开的,高数,数值分析,概率论数据统计,矩阵分析,泛函分析等理论知识可以慢慢来学习。此外可以多浏览些相关算法,案例等,比如相关论文,竞赛,他人积累的总结等。这里推荐几门开源的课程:mlcourseMLflowCopyright © 广州京杭网络科技有限公司 2005-2025 版权所有 粤ICP备16019765号
广州京杭网络科技有限公司 版权所有