专业网站建设品牌,十四年专业建站经验,服务6000+客户--广州京杭网络
免费热线:400-683-0016      微信咨询  |  联系我们

实数和虚数的分别_java

当前位置:网站建设 > 技术支持
资料来源:网络整理       时间:2023/3/9 4:17:45       共计:3566 浏览

实数和虚数的分别?

平方为正数的是实数,平方为负数的是虚数。实数,是有理数和无理数的总称。虚数这个名词是17世纪著名数学家笛卡尔创立的。

实数和虚数的区别

一、定义不同

1、实数

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

2、虚数

在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。

实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。

二、起源不同

1、实数

在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。

2、虚数

虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。

人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x2+1=0这样最简单的二次方程,在实数范围内没有解。

12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。

版权说明:
本网站凡注明“广州京杭 原创”的皆为本站原创文章,如需转载请注明出处!
本网转载皆注明出处,遵循行业规范,如发现作品内容版权或其它问题的,请与我们联系处理!
欢迎扫描右侧微信二维码与我们联系。
·上一条:如何避开公司代理服务器直接上网_服务器 | ·下一条:企友里凭证审核人怎么设置_java

Copyright © 广州京杭网络科技有限公司 2005-2024 版权所有    粤ICP备16019765号 

广州京杭网络科技有限公司 版权所有