专业网站建设品牌,十四年专业建站经验,服务6000+客户--广州京杭网络
免费热线:400-683-0016      微信咨询  |  联系我们

单调区间和在区间上单调的区别_CSS学习

当前位置:网站建设 > 技术支持
资料来源:网络整理       时间:2023/3/4 7:19:49       共计:3733 浏览

单调区间和在区间上单调的区别?

区别在于一个函数的单调区间不一定是一个区间,可能是多个区间,在区间上单调是指在某单一区间上单调性。

单调区间是指一个函数中所有递减或递增性质的区间;

在区间上单调是指某一个区间的单调性。

比如:

这个函数的单调增区间为(-1,1),(2,+∞)。而只能说在某一单一区间单调性,比如说在(0,2)的单调性,而这个区间不一定是单调的。

单调区间:

单调区间是指函数在某一区间内的函数值y,随自变量x增大而增大(或减小)恒成立。

单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。如果函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。单调区间f(x1)<f(x2)则称为单调增区间,反之则为单调减区间。

扩展资料:

单调区间性质

若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。

注:在单调性中有如下性质。图例:↑(增函数)↓(减函数)

↑+↑=↑ 两个增函数之和仍为增函数

↑-↓=↑ 增函数减去减函数为增函数

↓+↓=↓ 两个减函数之和仍为减函数

↓-↑=↓ 减函数减去增函数为减函数

一般地,设函数f(x)的定义域为I:

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2)。那么就说f(x)在这个区间上是增函数。

相反地,如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么f(x)在这个区间上是减函数。

版权说明:
本网站凡注明“广州京杭 原创”的皆为本站原创文章,如需转载请注明出处!
本网转载皆注明出处,遵循行业规范,如发现作品内容版权或其它问题的,请与我们联系处理!
欢迎扫描右侧微信二维码与我们联系。
·上一条:wps中间隔开上不去_CSS学习 | ·下一条:jq怎么删除文字_CSS学习

Copyright © 广州京杭网络科技有限公司 2005-2025 版权所有    粤ICP备16019765号 

广州京杭网络科技有限公司 版权所有