Python编程可以用来编写程序
Python由荷兰数学和计算机科学研究学会的吉多·范罗苏姆 于1990 年代初设计,作为一门叫做ABC语言的替代品。
Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。
Python, 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
Python通常应用于各种领域,是一种通用语言,无论是从网站、游戏开发、机器人,人工智能,大数据,云计算或是一些高科技的航天飞机控制都可以用到python语言。
因为Python有很多库,很方便做人工智能,比如numpy, scipy做数值计算的,sklearn做机器学习的,pybrain做神经网络的,matplotlib将数据可视化的。在人工智能大范畴领域内的数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。想学Python的话,可以去看看优就业的教程,讲解很清楚,适合小白学习。
首先,答案是肯定的,Python语言还是比较好学的。
语法简单易学是Python语言一个重要的特点,学习Python语言也几乎不需要任何基础,所以Python也是少儿编程的常见编程语言之一。
Python语言是典型的函数式语言与面向对象语言的结合体,所以编写Python代码会非常灵活,也非常直接,想用什么功能直接写就可以了,这与Java这样的纯面向对象语言还是有较大区别的,也许这也是Python语言比较受程序员欢迎的原因,因为没有人愿意复杂。Python语言比较简单还体现在丰富的“库”上,Python为各个常见的开发领域都准备了丰富的库,只要把这些库导进来就可以方便的使用。
虽然Python语言简单易学,但是Python语言的应用领域却比较广泛,语言生态也相对比较健全。目前Python语言在Web开发、大数据开发(数据分析)、人工智能开发(机器学习、计算机视觉、自然语言处理)、嵌入式开发等领域均有广泛的应用,相信随着大数据和人工智能的不断发展,未来Python语言的发展空间还是非常广阔的。
当然,采用Python语言也可以写出非常复杂的程序,尤其在人工智能领域,采用Python来完成算法实现的过程还是相对比较复杂的。不少开发团队把算法设计和算法实现进行了分离,从事算法实现的工程师往往需要通过Python等语言来实现算法设计师的设计方案,这个过程往往还是具有一定难度的,而且要求算法实现工程师也要具备扎实的算法基础。当然,目前不少团队的算法工程师既要完成算法设计,也需要完成算法实现,而且这似乎是目前一个发展趋势。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网方面的问题,或者考研方面的问题,都可以咨询我,谢谢!
1、学习一些基础理论知识
高等数学是学习Python开发的基础,数据挖掘、模式识别、人工智能智能等都是需要用到很多的微积分元素来预算的。以及优化理论和算法。
2、掌握好经典的机器学习理论和算法
(1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression)等。
(2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ)等。
(3) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5等。
(4) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络等。
(5) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function Python核心编程——Python语言基本介绍、面向对象编程、Linux操作系统、文件系统与用户管理、进程管理与服务配置、Shell编程与bash,源文件编译、版本控制、MySQL使用、MySQL进阶等。
全栈开发——HTML、CSS、JavaScript、jQuery、 BootStrap、Vue、Web开发基础、数据库操作、FLask配置、Django认识、Models、Templates、Views、Tornado框架进阶、ElasticSearch等。
网络爬虫——爬虫与数据、Scrapy框架、Scrapy框架与信息实时抓取、定时爬取与邮件监控、NoSQL数据库、Scrapy-Redis框架、百万量数据采集等。
人工智能——数据分析、pyechart模块动态可视化、词云、分类算法、聚类算法、回归类算法、关联算法、卷积神经网络、TensorFlow+PaddlePaddle、图像识别等。
总结,以上就是关于玫瑰花代码编程python以及python编程是干什么的的经验分享,卡友有疑问可以加wx或扫码加群!Copyright © 广州京杭网络科技有限公司 2005-2024 版权所有 粤ICP备16019765号
广州京杭网络科技有限公司 版权所有