mysql的区别和具体应用场景?
官方文档看一看。
编程实例练一练。
源码看一看。
一般互联网公司多用mysql,redis,mongodb做存储层,hadoop,Spark做大数据分析。
mysql适合结构化数据,类似excel表格一样定义严格的数据,用于数据量中,速度一般支持事务处理场合。
redis适合缓存内存对象,如缓存队列,用于数据量小,速度快不支持事务处理高并发场合。
mongodb,适合半结构化数据,如文本信息,用于数据量大,速度较快不支持事务处理场合。
hadoop是个生态系统,上面有大数据分析很多组件,适合事后大数据分析任务。
spark类似hadoop,偏向于内存计算,流计算,适合实时半实时大数据分析任务。
移动互联网及物联网让数据呈指数增长,NoSql大数据新起后,数据存储领域发展很快,似乎方向都是向大数据,内存计算,分布式框架,平台化发展,出现不少新的方法,如Apache Ignite适合于内存计算就集成了好多功能模快,Apache Storm、Spark、Flink也各有特点。
一般普通应用TB,GB级别达不到PB级别的数据存储,用mongodb,mysql就够了,hadoop,spark这类是航母一般多是大规模应用场景,多用于事后分析统计用,如电商的推荐系统分析系统。
聪明的战士总是选择适合的武器。具体什么场合用什么数据存储策略或混合使用,需要分析业务特点及未来业务发展需求来决定。
Copyright © 广州京杭网络科技有限公司 2005-2025 版权所有 粤ICP备16019765号
广州京杭网络科技有限公司 版权所有