数据分析要看的书籍,我推荐一些我觉得还不错的。大家可以先看电子版,或者去图书馆借阅,然后再选择是否需要购买。我按照数据分析需要学的东西来列举——Excel、SQL、Python、统计学、机器学习。
Excel作为常见的办公软件,拥有大量函数和公式,可以进行数据处理和图表输出。不需要编程基础,其他经常与数据接触的岗位,也建议学习。
《Excel函数与图表应用实例解析》,赛贝尔资讯,清华大学出版社:包含了Excel函数公式及其运用,非常适合入门;
《左手数据,右手图表》,徐军泰,机械工业出版社:包含Excel函数公式和动态图表两部分,相比前一本书内容更深入一些。
MySQL是世界上最受欢迎的开源数据库,很多中小企业甚至世界知名企业都有用到。所以学习数据库知识,我会推荐学习MySQL。
《MySQL必知必会》,[英] Ben Forta,人民邮电出版社:这本书比较系统性地讲述了我们学MySQL应该要掌握的知识,适合零基础的人。
如果非数据分析岗,只是为了满足其它岗位的少量数据处理需求,看上面三本书就够了。如果需要在数分岗位上精益下去,下面的这些内容不得不学。
Python是目前最受数据科学家青睐的预言,它拥有丰富的生态系统和强大的交互性,以及快速的开发周期。对于程序员来说,Python小菜一碟,但对于没有编程基础的人来说,学起来还是有难度的。做数据分析,只需要掌握Python的NumPy、Pandas、Matplotlib、Sklearn这四个库,就行了。如果岗位要求需要获取外部数据,再学一个爬虫知识即可。
《Python基础教程》,Magnus Lie Hetland,人民邮电出版社:这本书内容包括语法介绍和一些小项目的演示,真的是基础教程,适合入门;
《利用python进行数据分析》,Wes McKinney,机械工业出版社:这本书重点讲了Pandas库,少量涉及NumPy和Matplotlib,比较经典的书;
《Python数据科学手册》,Jake VanderPlas,人民邮电出版社:可以看作是前一本书的进阶书籍,介绍了数据分析的主要库,偏数据清洗。
以上属于数据分析的工具篇书籍,要想成为数据分析师,最重要的还是具备数据分析思维,和掌握统计学、机器学习相关知识。
《统计学》,贾俊平,中国人民大学出版社:偏数理统计知识,可以快速帮助初学者理解统计学的基本原理框架;
《Statistical Inference》,George Casella / Roger L. Berger,Duxbury Press:本书包括概率和统计两部分的内容;
《统计学习方法》,李航,清华大学出版社:讲了机器学习的10个算法,比较全面,适合学习总结;
《非线性时间序列》,范剑青,科学出版社发行部:难度比较大的一本书,非常有启发意义;
《The Elements of Statistical Learning》,T. Hastie / R. Tibshirani / J. H. Friedman,Springer:机器学习非常好的书籍,对读者的专业素质要求较高。
最后,再啰嗦一下。入门建议先看视频,进阶看书+刷题+视频,高阶看书+论文+小项目,最后可以接项目+参赛(数分之路已被我安排妥妥贴贴~~~)。
~~
我经常更新一些数据分析相关的文章内容,感兴趣的可以看我主页~
Copyright © 广州京杭网络科技有限公司 2005-2025 版权所有 粤ICP备16019765号
广州京杭网络科技有限公司 版权所有