SQL之外部数据源如何成为在企业开发中的一把利器?
一、简介#
1.1 多数据源支持#
Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景。
CSV
JSON
Parquet
ORC
JDBC/ODBC connections
Plain-text files
注:以下所有测试文件均可从本仓库的resources 目录进行下载
1.2 读数据格式#
所有读取 API 遵循以下调用格式:
Copy
// 格式
DataFrameReader.format(...).option("key", "value").schema(...).load()
// 示例
spark.read.format("csv")
.option("mode", "FAILFAST") // 读取模式
.option("inferSchema", "true") // 是否自动推断 schema
.option("path", "path/to/file(s)") // 文件路径
.schema(someSchema) // 使用预定义的 schema
.load()
读取模式有以下三种可选项:
读模式 描述
permissive 当遇到损坏的记录时,将其所有字段设置为 null,并将所有损坏的记录放在名为 _corruption t_record 的字符串列中
dropMalformed 删除格式不正确的行
failFast 遇到格式不正确的数据时立即失败
1.3 写数据格式#
Copy
// 格式
DataFrameWriter.format(...).option(...).partitionBy(...).bucketBy(...).sortBy(...).save()
//示例
dataframe.write.format("csv")
.option("mode", "OVERWRITE") //写模式
.option("dateFormat", "yyyy-MM-dd") //日期格式
.option("path", "path/to/file(s)")
.save()
写数据模式有以下四种可选项:
Scala/Java 描述
SaveMode.ErrorIfExists 如果给定的路径已经存在文件,则抛出异常,这是写数据默认的模式
SaveMode.Append 数据以追加的方式写入
SaveMode.Overwrite 数据以覆盖的方式写入
SaveMode.Ignore 如果给定的路径已经存在文件,则不做任何操作
二、CSV#
CSV 是一种常见的文本文件格式,其中每一行表示一条记录,记录中的每个字段用逗号分隔。
2.1 读取CSV文件#
自动推断类型读取读取示例:
Copy
spark.read.format("csv")
.option("header", "false") // 文件中的第一行是否为列的名称
.option("mode", "FAILFAST") // 是否快速失败
.option("inferSchema", "true") // 是否自动推断 schema
.load("/usr/file/csv/dept.csv")
.show()
使用预定义类型:
Copy
import org.apache.spark.sql.types.{StructField, StructType, StringType,LongType}
//预定义数据格式
val myManualSchema = new StructType(Array(
StructField("deptno", LongType, nullable = false),
StructField("dname", StringType,nullable = true),
StructField("loc", StringType,nullable = true)
))
spark.read.format("csv")
.option("mode", "FAILFAST")
.schema(myManualSchema)
.load("/usr/file/csv/dept.csv")
.show()
2.2 写入CSV文件#
Copy
df.write.format("csv").mode("overwrite").save("/tmp/csv/dept2")
也可以指定具体的分隔符:
Copy
df.write.format("csv").mode("overwrite").option("sep", "\t").save("/tmp/csv/dept2")
2.3 可选配置#
为节省主文篇幅,所有读写配置项见文末 9.1 小节。三、JSON#
3.1 读取JSON文件#
Copy
spark.read.format("json").option("mode", "FAILFAST").load("/usr/file/json/dept.json").show(5)
需要注意的是:默认不支持一条数据记录跨越多行 (如下),可以通过配置 multiLine 为 true 来进行更改,其默认值为 false。
Copy
// 默认支持单行
{"DEPTNO": 10,"DNAME": "ACCOUNTING","LOC": "NEW YORK"}
//默认不支持多行
{
"DEPTNO": 10,
"DNAME": "ACCOUNTING",
"LOC": "NEW YORK"
}
3.2 写入JSON文件#
Copy
df.write.format("json").mode("overwrite").save("/tmp/spark/json/dept")
3.3 可选配置#
为节省主文篇幅,所有读写配置项见文末 9.2 小节。
四、Parquet#
Parquet 是一个开源的面向列的数据存储,它提供了多种存储优化,允许读取单独的列非整个文件,这不仅节省了存储空间而且提升了读取效率,它是 Spark 是默认的文件格式。
4.1 读取Parquet文件#
Copy
spark.read.format("parquet").load("/usr/file/parquet/dept.parquet").show(5)
2.2 写入Parquet文件#
Copy
df.write.format("parquet").mode("overwrite").save("/tmp/spark/parquet/dept")
2.3 可选配置#
Parquet 文件有着自己的存储规则,因此其可选配置项比较少,常用的有如下两个:
读写操作 配置项 可选值 默认值 描述
Write compression or codec None,
uncompressed,
bzip2,
deflate, gzip,
lz4, or snappy None 压缩文件格式
Read mergeSchema true, false 取决于配置项 spark.sql.parquet.mergeSchema
五、ORC#
ORC 是一种自描述的、类型感知的列文件格式,它针对大型数据的读写进行了优化,也是大数据中常用的文件格式。
5.1 读取ORC文件#
Copy
spark.read.format("orc").load("/usr/file/orc/dept.orc").show(5)
4.2 写入ORC文件#
Copy
csvFile.write.format("orc").mode("overwrite").save("/tmp/spark/orc/dept")
六、SQL Databases#
Spark 同样支持与传统的关系型数据库进行数据读写。但是 Spark 程序默认是没有提供数据库驱动的,所以在使用前需要将对应的数据库驱动上传到安装目录下的 jars 目录中。下面示例使用的是 Mysql 数据库,使用前需要将对应的 mysql-connector-java-x.x.x.jar 上传到 jars 目录下。
6.1 读取数据#
读取全表数据示例如下,这里的 help_keyword 是 mysql 内置的字典表,只有 help_keyword_id 和 name 两个字段。
Copy
spark.read
.format("jdbc")
.option("driver", "com.mysql.jdbc.Driver") //驱动
.option("url", "jdbc:mysql://127.0.0.1:3306/mysql") //数据库地址
.option("dbtable", "help_keyword") //表名
.option("user", "root").option("password","root").load().show(10)
从查询结果读取数据:
val pushDownQuery = """(SELECT * FROM help_keyword WHERE help_keyword_id <20) AS help_keywords"""
spark.read.format("jdbc")
.option("url", "jdbc:mysql://127.0.0.1:3306/mysql")
.option("driver", "com.mysql.jdbc.Driver")
.option("user", "root").option("password", "root")
.option("dbtable", pushDownQuery)
.load().show()
//输出
+---------------+-----------+
|help_keyword_id| name|
+---------------+-----------+
| 0| <>|
| 1| ACTION|
| 2| ADD|
| 3|AES_DECRYPT|
| 4|AES_ENCRYPT|
| 5| AFTER|
| 6| AGAINST|
| 7| AGGREGATE|
| 8| ALGORITHM|
| 9| ALL|
| 10| ALTER|
| 11| ANALYSE|
| 12| ANALYZE|
| 13| AND|
| 14| ARCHIVE|
| 15| AREA|
| 16| AS|
| 17| ASBINARY|
| 18| ASC|
| 1
七、Text#
Text 文件在读写性能方面并没有任何优势,且不能表达明确的数据结构,所以其使用的比较少,读写操作如下:
7.1 读取Text数据#
Copy
spark.read.textFile("/usr/file/txt/dept.txt").show()
7.2 写入Text数据#
Copy
df.write.text("/tmp/spark/txt/dept")
八、数据读写高级特性#
8.1 并行读#
多个 Executors 不能同时读取同一个文件,但它们可以同时读取不同的文件。这意味着当您从一个包含多个文件的文件夹中读取数据时,这些文件中的每一个都将成为 DataFrame 中的一个分区,并由可用的 Executors 并行读取。
8.2 并行写#
写入的文件或数据的数量取决于写入数据时 DataFrame 拥有的分区数量。默认情况下,每个数据分区写一个文件。
8.3 分区写入#
分区和分桶这两个概念和 Hive 中分区表和分桶表是一致的。都是将数据按照一定规则进行拆分存储。需要注意的是 partitionBy 指定的分区和 RDD 中分区不是一个概念:这里的分区表现为输出目录的子目录,数据分别存储在对应的子目录中。
Copy
val df = spark.read.format("json").load("/usr/file/json/emp.json")
df.write.mode("overwrite").partitionBy("deptno").save("/tmp/spark/partitions")
输出结果如下:可以看到输出被按照部门编号分为三个子目录,子目录中才是对应的输出文件。
8.3 分桶写入#
分桶写入就是将数据按照指定的列和桶数进行散列,目前分桶写入只支持保存为表,实际上这就是 Hive 的分桶表。
val numberBuckets = 10
val columnToBucketBy = "empno"
df.write.format("parquet").mode("overwrite")
.bucketBy(numberBuckets, columnToBucketBy).saveAsTable("bucketedFiles")
.......
具体介绍来源于https://www.cnblogs.com/heibaiying/p/11347390.html
Copyright © 广州京杭网络科技有限公司 2005-2024 版权所有 粤ICP备16019765号
广州京杭网络科技有限公司 版权所有