专业网站建设品牌,十四年专业建站经验,服务6000+客户--广州京杭网络
免费热线:400-683-0016      微信咨询  |  联系我们

概率的公理化定义及性质_java

当前位置:网站建设 > 技术支持
资料来源:网络整理       时间:2023/3/7 1:24:58       共计:3580 浏览

概率的公理化定义及性质?

概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。

1、这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。

2、根据概率的公理化定义,概率指的是满足如下三个特点的集合函数(亦即以集合为定义域的实值函数):(1)非负性。亦即概率的取值不能是负数。

实际上,任何“测度”,例如长度、面积、体积、重量等,都不能取负数。因此,作为针对“可能性”的测度,概率自然也不能取负数。

(2)正则性。亦即概率的取值不能超过1。

相较于其它的测度,正则性是概率这种测度的特别之处。因为诸如长度、面积、体积以及重量之类的测度都没有取值上限这种约束。而概率的取值之所以要求不能超过1,实在是基于我们对“可能性”大小这一判断的经验(或习惯)做法。

(3)(无限)可列可加性。亦即无限个互不相容集合(事件)的并的概率,等于无限个(与每一个集合相对应的)概率之和。

概率的可列可加性有两个含义:

一是互不相容的集合的并的概率,等于其中每一个集合的概率之和。这一规定仍是基于现实的经验。

二是要求在“可能性”的测度过程中不能出现无限个概率之和不存在的情况,因为这也是违背经验的事情。

扩展资料:

概率的无限可列可加性的应用:

满足公理化定义的概率还具有连续性,亦即它既具有下连续性,也具有上连续性。

基于概率的无限可列可加性,我们很容易推导出概率的有限可列可加性。但基于概率的有限可列可加性,我们并不能逆推出概率的无限可列可加性。

在概率满足有限可列可加性的基础上,还必须再增加一个概率满足下连续的假设,才能推出这个概率函数满足无限可列可加性的结论。

版权说明:
本网站凡注明“广州京杭 原创”的皆为本站原创文章,如需转载请注明出处!
本网转载皆注明出处,遵循行业规范,如发现作品内容版权或其它问题的,请与我们联系处理!
欢迎扫描右侧微信二维码与我们联系。
·上一条:双色球旋转矩阵_java | ·下一条:vincc怎么找组件图形_java

Copyright © 广州京杭网络科技有限公司 2005-2025 版权所有    粤ICP备16019765号 

广州京杭网络科技有限公司 版权所有