WPL = 7 * 1 + 5 * 2 + 2 * 3 + 4 * 3
//哈夫曼树结点结构 typedef struct { int weight;//结点权重 int parent, left, right;//父结点、左孩子、右孩子在数组中的位置下标 }HTNode, *HuffmanTree;
//HT数组中存放的哈夫曼树,end表示HT数组中存放结点的最终位置,s1和s2传递的是HT数组中权重值最小的两个结点在数组中的位置 void Select(HuffmanTree HT, int end, int *s1, int *s2) { int min1, min2; //遍历数组初始下标为 1 int i = 1; //找到还没构建树的结点 while(HT[i].parent != 0 && i <= end){ i++; } min1 = HT[i].weight; *s1 = i; i++; while(HT[i].parent != 0 && i <= end){ i++; } //对找到的两个结点比较大小,min2为大的,min1为小的 if(HT[i].weight < min1){ min2 = min1; *s2 = *s1; min1 = HT[i].weight; *s1 = i; }else{ min2 = HT[i].weight; *s2 = i; } //两个结点和后续的所有未构建成树的结点做比较 for(int j=i+1; j <= end; j++) { //如果有父结点,直接跳过,进行下一个 if(HT[j].parent != 0){ continue; } //如果比最小的还小,将min2=min1,min1赋值新的结点的下标 if(HT[j].weight < min1){ min2 = min1; min1 = HT[j].weight; *s2 = *s1; *s1 = j; } //如果介于两者之间,min2赋值为新的结点的位置下标 else if(HT[j].weight >= min1 && HT[j].weight < min2){ min2 = HT[j].weight; *s2 = j; } } }
构建哈弗曼树的代码实现如下:注意:s1和s2传入的是实参的地址,所以函数运行完成后,实参中存放的自然就是哈夫曼树中权重值最小的两个结点在数组中的位置。
//HT为地址传递的存储哈夫曼树的数组,w为存储结点权重值的数组,n为结点个数 void CreateHuffmanTree(HuffmanTree *HT, int *w, int n) { if(n<=1) return; // 如果只有一个编码就相当于0 int m = 2*n-1; // 哈夫曼树总节点数,n就是叶子结点 *HT = (HuffmanTree) malloc((m+1) * sizeof(HTNode)); // 0号位置不用 HuffmanTree p = *HT; // 初始化哈夫曼树中的所有结点 for(int i = 1; i <= n; i++) { (p+i)->weight = *(w+i-1); (p+i)->parent = 0; (p+i)->left = 0; (p+i)->right = 0; } //从树组的下标 n+1 开始初始化哈夫曼树中除叶子结点外的结点 for(int i = n+1; i <= m; i++) { (p+i)->weight = 0; (p+i)->parent = 0; (p+i)->left = 0; (p+i)->right = 0; } //构建哈夫曼树 for(int i = n+1; i <= m; i++) { int s1, s2; Select(*HT, i-1, &s1, &s2); (*HT)[s1].parent = (*HT)[s2].parent = i; (*HT)[i].left = s1; (*HT)[i].right = s2; (*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight; } }注意,如果使用此程序,对权重值分别为 2、8、7、6、5 的节点构建哈夫曼树,最终效果如图 4(A) 所示。但其实,图 4(B) 中显示的哈夫曼树也满足条件,这两棵树的带权路径长度相同。
Copyright © 广州京杭网络科技有限公司 2005-2025 版权所有 粤ICP备16019765号
广州京杭网络科技有限公司 版权所有